FUSE Introductory Tutorial

Download this tutorial from the FuseExamples repository

Basic concepts

To make sense of this tutorial, you'll need to know the following organization concepts of FUSE:

  1. 📂 Data storage: All data is stored in the dd structure, which follows the ITER IMAS ontology.
  2. 🧠 Actors: The core components of FUSE simulations are physics and engineering actors.
  3. 🕹️ Control: Actor functionality is governed by act parameters.
  4. 🚀 Initialization: The data structure can be initialized from 0D ini parameters.
  5. 🔧 Use cases: FUSE includes templates for various machines (e.g., FPP, ITER, ARC).
  6. 🔄 Workflows: Self-contained studies and optimizations are conducted via workflows, typically involving multiple FUSE simulations.
  7. 🌍 Interoperability: FUSE interfaces with existing modeling tools like OMFIT/OMAS and the IMAS ecosystem.

A diagram illustrating these concepts is provided below: image.png

Let's get started!


NOTE: Julia is a Just In Time (JIT) programming language. The first time something is executed it will take longer because of the compilation process. Subsequent calls the the same code will be blazingly fast.


Import the necessary packages

using Plots # for plotting
using FUSE # this will also import IMAS in the current namespace

Starting from a use-case

FUSE comes with some predefined use-cases, some of which are used for regression testing.

Note that some use cases are for non-nuclear experiments and certain Actors like Blankets or BalanceOfPlant will not perform any actions.

FUSE.test_cases
ARC             ini, act = FUSE.case_parameters(:ARC)
CAT             ini, act = FUSE.case_parameters(:CAT)
D3D             ini, act = FUSE.case_parameters(:D3D, :default)
D3D_Hmode       ini, act = FUSE.case_parameters(:D3D, :H_mode)
D3D_Lmode       ini, act = FUSE.case_parameters(:D3D, :L_mode)
DTT             ini, act = FUSE.case_parameters(:DTT)
EXCITE          ini, act = FUSE.case_parameters(:EXCITE)
FPP             ini, act = FUSE.case_parameters(:FPP)
ITER_ods        ini, act = FUSE.case_parameters(:ITER; init_from=:ods)
ITER_scalars    ini, act = FUSE.case_parameters(:ITER; init_from=:scalars)
JET_HDB5        ini, act = FUSE.case_parameters(:HDB5; case=500, tokamak=:JET)
KDEMO           ini, act = FUSE.case_parameters(:KDEMO)
KDEMO_compact   ini, act = FUSE.case_parameters(:KDEMO_compact)
MANTA           ini, act = FUSE.case_parameters(:MANTA)
SPARC           ini, act = FUSE.case_parameters(:SPARC; init_from=:ods)
UNIT            ini, act = FUSE.case_parameters(:UNIT)

Get initial parameters (ini) and actions (act) for a given use-case

ini, act = FUSE.case_parameters(:KDEMO);

Modifying ini parameters.

ini.equilibrium.B0 = 7.8
ini.equilibrium.R0 = 6.5;

Modifying act parameters.

act.ActorCoreTransport.model = :FluxMatcher;

Initialize the data dictionary (dd) using the 0D parameters.

NOTE: init() does not return a self-consistent solution, just a plausible starting point to initialize our simulations!

dd = IMAS.dd() # an empty dd
FUSE.init(dd, ini, act);
actors: Equilibrium
actors:  TEQUILA
actors: CXbuild
actors: HCD
actors:  SimpleEC
actors:  SimpleIC
actors:  SimpleLH
actors:  SimpleNB
actors:  SimplePL
actors: Current
actors:  QED
actors: PassiveStructures

We can @checkin and @checkout variables with an associated tag.

This is handy to save and restore our progress (we'll use this later).

@checkin :init dd ini act

Exploring the data dictionary

  • FUSE stores data following the IMAS data schema.
  • The root of the data structure is dd, which stands for "Data Dictionary".
  • More details are available in the documentation.

Display part of the equilibrium data in dd

dd.equilibrium.time_slice[1].boundary
boundary
├─ elongation ➡ 1.9957
├─ elongation_lowerFunction
├─ elongation_upperFunction
├─ geometric_axis
│  ├─ r ➡ 6.49994 [m]
│  └─ z ➡ -0.0220736 [m]
├─ minor_radius ➡ 2.00733 [m]
├─ outline
│  ├─ r239-element Vector{Float64} [m]
│  │      min:4.52   avg:6.27   max:8.49
│  └─ z239-element Vector{Float64} [m]min:-4.07   avg:-0.0906   max:3.85
├─ ovality ➡ 0.00699545
├─ squareness ➡ -0.0127582
├─ squareness_lower_innerFunction
├─ squareness_lower_outerFunction
├─ squareness_upper_innerFunction
├─ squareness_upper_outerFunction
├─ strike_point
│  ├─ 1
│  │  ├─ r ➡ 4.21661 [m]
│  │  └─ z ➡ -4.48745 [m]
│  └─ 2
│     ├─ r ➡ 5.49723 [m]
│     └─ z ➡ -5.08706 [m]
├─ tilt ➡ -0.00586781
├─ triangularity ➡ 0.58633
├─ triangularity_lowerFunction
├─ triangularity_upperFunction
├─ twist ➡ 0.00468628
└─ x_point
   ├─ 1
   │  ├─ r ➡ 5.11512 [m]
   │  └─ z ➡ -4.07738 [m]
   └─ 2
      ├─ r ➡ 4.85058 [m]
      └─ z ➡ 4.30574 [m]

this can be done up to a certain depth with print_tree

print_tree(dd.equilibrium.time_slice[1].boundary; maxdepth=1)
boundary
├─ elongation ➡ 1.9957
├─ elongation_lower ➡ Function
├─ elongation_upper ➡ Function
├─ geometric_axis
│  ⋮
│
├─ minor_radius ➡ 2.00733 [m]
├─ outline
│  ⋮
│
├─ ovality ➡ 0.00699545
├─ squareness ➡ -0.0127582
├─ squareness_lower_inner ➡ Function
├─ squareness_lower_outer ➡ Function
├─ squareness_upper_inner ➡ Function
├─ squareness_upper_outer ➡ Function
├─ strike_point
│  ⋮
│
├─ tilt ➡ -0.00586781
├─ triangularity ➡ 0.58633
├─ triangularity_lower ➡ Function
├─ triangularity_upper ➡ Function
├─ twist ➡ 0.00468628
└─ x_point
   ⋮

Plotting data from dd

FUSE uses Plots.jl recipes for visualizing data from dd.

This allows different plots to be shown when calling plot() on different items in the data structure.

Learn more about Plots.jl here

For example plotting the equilibrium...

plot(dd.equilibrium)
Example block output

...or the core profiles

plot(dd.core_profiles)
Example block output

Whant to know what arguments can be passed? use help_plot() function

help_plot(dd.equilibrium; core_profiles_overlay=true, levels_in=21, levels_out=5, show_secondary_separatrix=true, coordinate=:rho_tor_norm)
Example block output

These plots can be composed by calling plot!() instead of plot()

plot(dd.equilibrium; color=:gray, cx=true)
plot!(dd.build.layer)
plot!(dd.pf_active)
plot!(dd.pf_passive)
plot!(dd.pulse_schedule.position_control; color=:red)
Example block output

Plotting an array...

plot(dd.core_profiles.profiles_1d[1].pressure_thermal)
Example block output

...is different from plotting a field from the IDS (which plots the quantity against its coordinate and with units)

plot(dd.core_profiles.profiles_1d[1], :pressure_thermal)
Example block output

Customizing plot attributes:

plot(dd.core_profiles.profiles_1d[1], :pressure_thermal; label="", linewidth=2, color=:red, labelfontsize=25)
Example block output

Use findall(ids, r"...") to search for certain fields. In Julia, string starting with r are regular expressions.

findall(dd, r"\.psi")
[1] dd.core_profiles.profiles_1d[1].grid.psi [Wb] [101-element Vector{Float64}] (min:-63.9, avg:-38.1, max:-1.01)
[2] dd.equilibrium.time_slice[1].global_quantities.psi_boundary [Wb] [Float64] (all:0)
[3] dd.equilibrium.time_slice[1].global_quantities.psi_axis [Wb] [Float64] (all:0)
[4] dd.equilibrium.time_slice[1].profiles_1d.psi [Wb] [129-element Vector{Float64}] (min:-63.9, avg:-32.5, max:-1.01)
[5] dd.equilibrium.time_slice[1].profiles_2d[1].psi [Wb] [31×13 Matrix{Float64}] (min:-0.0683, avg:0.655, max:6.69)
[6] dd.equilibrium.time_slice[1].profiles_2d[2].psi [Wb] [66×129 Matrix{Float64}] (min:-63.9, avg:14.5, max:112)

findall(ids, r"...") can be combined with plot() to plot multiple fields

plot(findall(dd, r"\.psi"))
Example block output

Working with time series

The IMAS data structure supports time-dependent data, and IMAS.jl provides ways to handle time data efficiently.

Each dd has a global_time attribute, which is used throughout FUSE and IMAS to indicate the time at which things should be operate.

dd.global_time
0.0

For the sake of demonstrating handling of time, let's add a new time_slice to the equilibrium.

NOTE: time dependent arrays of structures can be resized with resize!(ids, time0::Float64) in addition to the usual resize!(ids, n::Int).

resize the time dependent array of structure

resize!(dd.equilibrium.time_slice, 1.0);

let's just populate it with the data from the previous time slice

dd.equilibrium.time_slice[2] = deepcopy(dd.equilibrium.time_slice[1]);
dd.equilibrium.time_slice[2].time = 1.0
1.0

Here we see that equilibrium has mulitiple time_slices

dd.equilibrium.time
2-element Vector{Float64}:
 0.0
 1.0

We can access time-dependent arrays of structures via integer index...

eqt = dd.equilibrium.time_slice[2]
eqt.time
1.0

...or at a given time, by passing the time as a floating point number (in seconds)

eqt = dd.equilibrium.time_slice[1.0]
eqt.time
1.0

NOTE: If we ask a time that is not exactly in the arrays of structures, we'll get the closest (causal!) time-slice

eqt = dd.equilibrium.time_slice[0.9]
eqt.time

eqt = dd.equilibrium.time_slice[1.1]
eqt.time
1.0

... or at the current dd.global_time by leaving the square brackets empty []

NOTE: This is what you want to use in most situations that involve arrays of structures!

dd.global_time = 0.0
eqt = dd.equilibrium.time_slice[]
eqt.time

dd.global_time = 1.0
eqt = dd.equilibrium.time_slice[]
eqt.time
1.0

What we described above was for time-dependent arrays of structures.

The other place where time comes in, is when dealing with time-dependent arrays of data.

In this case, we can use the @ddtime macro to manipulate these time-dependent arrays at dd.global_time.

NOTE: Also in this case, @ddtime will operate on the closest (causal!) time point

dd.equilibrium.vacuum_toroidal_field.b0

dd.global_time = 1.0
@ddtime(dd.equilibrium.vacuum_toroidal_field.b0 = 10.0)
dd.equilibrium.vacuum_toroidal_field.b0

dd.global_time = 0.0
@ddtime(dd.equilibrium.vacuum_toroidal_field.b0)

dd.global_time = 1.0
@ddtime(dd.equilibrium.vacuum_toroidal_field.b0)
10.0

Expressions in dd

Some fields in the data dictionary are expressions (ie. Functions). For example dd.core_profiles.profiles_1d[].pressure is dynamically calculated as the product of thermal densities and temperature with addition of fast ions contributions

dd.global_time = 0.0
print_tree(dd.core_profiles.profiles_1d[]; maxdepth=1)
1
├─ conductivity_parallel ➡ Function [ohm^-1.m^-1]
├─ electrons
│  ⋮
│
├─ grid
│  ⋮
│
├─ ion
│  ⋮
│
├─ j_bootstrap ➡ 101-element Vector{Float64} [A/m^2]
│                min:3.15e+03   avg:1.38e+05   max:1.84e+05
├─ j_non_inductive ➡ 101-element Vector{Float64} [A/m^2]
│                    min:3.15e+03   avg:9.29e+05   max:5.72e+06
├─ j_ohmic ➡ 101-element Vector{Float64} [A/m^2]
│            min:618   avg:3.71e+05   max:6.97e+05
├─ j_tor ➡ 101-element Vector{Float64} [A/m^2]
│          min:3.21e+03   avg:1.31e+06   max:6.53e+06
├─ j_total ➡ 101-element Vector{Float64} [A/m^2]
│            min:3.77e+03   avg:1.3e+06   max:6.4e+06
├─ pressure ➡ Function [Pa]
├─ pressure_ion_total ➡ Function [Pa]
├─ pressure_parallel ➡ Function [Pa]
├─ pressure_perpendicular ➡ Function [Pa]
├─ pressure_thermal ➡ Function [Pa]
├─ rotation_frequency_tor_sonic ➡ 101-element Vector{Float64} [s^-1]
│                                 all:0
├─ t_i_average ➡ Function [eV]
├─ time ➡ 0 [s]
└─ zeff ➡ 101-element Vector{Float64}
          all:2

accessing a dynamic expression, automatically evaluates it

dd.core_profiles.profiles_1d[].conductivity_parallel
101-element Vector{Float64}:
      2.4469260041857634e9
      2.3896641130496655e9
      2.3142008879597373e9
      2.2359619663792214e9
      2.156884803454022e9
      2.077473824977822e9
      1.9979657952082086e9
      1.9185223891508913e9
      1.8655039042832177e9
      1.8137236051381905e9
      ⋮
      2.8432053281471085e7
      2.6855469403218094e7
      2.5117266368447494e7
      2.2729034939701173e7
      1.9019657914718214e7
      1.3611787079932088e7
      7.6935379512968995e6
      3.06963291660394e6
 598914.6299064063

In addition to evaluating expressions by accessing them, expressions in the tree can be evaluated using IMAS.freeze(ids)

NOTE: IMAS.freeze(ids, field::Symbol) works on a single field and IMAS.refreeze!(ids, field) forces re-evaluation of an expression. Also, IMAS.empty!(ids, field::Symbol) can be used to revert a frozen field back into an expression.

print_tree(IMAS.freeze(dd.core_profiles.profiles_1d[1]); maxdepth=1)
profiles_1d
├─ conductivity_parallel ➡ 101-element Vector{Float64} [ohm^-1.m^-1]
│                          min:5.99e+05   avg:7.1e+08   max:2.45e+09
├─ electrons
│  ⋮
│
├─ grid
│  ⋮
│
├─ ion
│  ⋮
│
├─ j_bootstrap ➡ 101-element Vector{Float64} [A/m^2]
│                min:3.15e+03   avg:1.38e+05   max:1.84e+05
├─ j_non_inductive ➡ 101-element Vector{Float64} [A/m^2]
│                    min:3.15e+03   avg:9.29e+05   max:5.72e+06
├─ j_ohmic ➡ 101-element Vector{Float64} [A/m^2]
│            min:618   avg:3.71e+05   max:6.97e+05
├─ j_tor ➡ 101-element Vector{Float64} [A/m^2]
│          min:3.21e+03   avg:1.31e+06   max:6.53e+06
├─ j_total ➡ 101-element Vector{Float64} [A/m^2]
│            min:3.77e+03   avg:1.3e+06   max:6.4e+06
├─ pressure ➡ 101-element Vector{Float64} [Pa]
│             min:362   avg:3.57e+05   max:7.74e+05
├─ pressure_ion_total ➡ 101-element Vector{Float64} [Pa]
│                       min:171   avg:1.46e+05   max:2.98e+05
├─ pressure_parallel ➡ 101-element Vector{Float64} [Pa]
│                      min:121   avg:1.19e+05   max:2.58e+05
├─ pressure_perpendicular ➡ 101-element Vector{Float64} [Pa]
│                           min:121   avg:1.19e+05   max:2.58e+05
├─ pressure_thermal ➡ 101-element Vector{Float64} [Pa]
│                     min:362   avg:3.1e+05   max:6.33e+05
├─ rotation_frequency_tor_sonic ➡ 101-element Vector{Float64} [s^-1]
│                                 all:0
├─ t_i_average ➡ 101-element Vector{Float64} [eV]
│                min:80   avg:1.32e+04   max:2.5e+04
├─ time ➡ 0 [s]
└─ zeff ➡ 101-element Vector{Float64}
          all:2

Whole facility design

Here we restore the :init checkpoint that we had previously stored. Resetting any changes to dd, ini, and act that we did in the meantime.

@checkout :init dd ini act

Actors in FUSE can be executed by passing two arguments to them: dd and act. Internally, actors can call other actors, creating workflows. For example, the ActorWholeFacility can be used to to get a self-consistent stationary whole facility design. The actors: print statements with their nested output tell us what actors are calling other actors.

FUSE.ActorWholeFacility(dd, act);
actors: WholeFacility
actors:  PFdesign
actors:  StationaryPlasma
actors:   --------------- 1/5
actors:   HCD
actors:    SimpleEC
actors:    SimpleIC
actors:    SimpleLH
actors:    SimpleNB
actors:    SimplePL
actors:   Current
actors:    QED
actors:   Pedestal
actors:    EPED
actors:   CoreTransport
actors:    FluxMatcher
actors:   Current
actors:    QED
actors:   Equilibrium
actors:    TEQUILA
actors:   --------------- 1/5 @ 416.01%
actors:   HCD
actors:    SimpleEC
actors:    SimpleIC
actors:    SimpleLH
actors:    SimpleNB
actors:    SimplePL
actors:   Current
actors:    QED
actors:   Pedestal
actors:    EPED
actors:   CoreTransport
actors:    FluxMatcher
actors:   Current
actors:    QED
actors:   Equilibrium
actors:    TEQUILA
actors:   --------------- 2/5 @ 707.97%
actors:   HCD
actors:    SimpleEC
actors:    SimpleIC
actors:    SimpleLH
actors:    SimpleNB
actors:    SimplePL
actors:   Current
actors:    QED
actors:   Pedestal
actors:    EPED
actors:   CoreTransport
actors:    FluxMatcher
actors:   Current
actors:    QED
actors:   Equilibrium
actors:    TEQUILA
actors:   --------------- 3/5 @ 667.92%
actors:   HCD
actors:    SimpleEC
actors:    SimpleIC
actors:    SimpleLH
actors:    SimpleNB
actors:    SimplePL
actors:   Current
actors:    QED
actors:   Pedestal
actors:    EPED
actors:   CoreTransport
actors:    FluxMatcher
actors:   Current
actors:    QED
actors:   Equilibrium
actors:    TEQUILA
actors:   --------------- 4/5 @ 435.64%
actors:   HCD
actors:    SimpleEC
actors:    SimpleIC
actors:    SimpleLH
actors:    SimpleNB
actors:    SimplePL
actors:   Current
actors:    QED
actors:   Pedestal
actors:    EPED
actors:   CoreTransport
actors:    FluxMatcher
actors:   Current
actors:    QED
actors:   Equilibrium
actors:    TEQUILA
actors:   --------------- 5/5 @ 181.18%
┌ Warning: Max number of iterations (5) has been reached with convergence error of (1)[0.208, 0.354, 0.334, 0.218, 0.091](5) compared to threshold of 0.05
└ @ FUSE ~/work/FUSE.jl/FUSE.jl/src/actors/compound/stationary_plasma_actor.jl:204
actors:  HFSsizing
actors:   FluxSwing
actors:   Stresses
actors:  LFSsizing
actors:  CXbuild
actors:  PFdesign
actors:  Equilibrium
actors:   TEQUILA
actors:  CXbuild
actors:  Neutronics
actors:  Blanket
actors:  CXbuild
actors:  PassiveStructures
actors:  Divertors
actors:  PlasmaLimits
actors:   VerticalStability
actors:   TroyonBetaNN
┌ Warning: act.ActorPlasmaLimits.models = [:vertical_stability, :beta_troyon_nn, :q95_gt_2, :gw_density, :κ_controllability]
│
│ Some stability rules exceed their limit threshold:
│  133% of: Vertical stability margin > 0.15 for stability
│  111% of: Normalized vertical growth rate < 10 for stability
│
│ Some stability rules satisfy their limit threshold:
│  81% of: βn < BetaTroyonNN n=1
│  29% of: βn < BetaTroyonNN n=2
│  40% of: βn < BetaTroyonNN n=3
│  33% of: q(rho=0.95) > 2.0
│  80% of: greenwald_fraction < 1.0
│  82% of: elongation < IMAS.elongation_limit
└ @ FUSE ~/work/FUSE.jl/FUSE.jl/src/actors/stability/limits_actor.jl:92
actors:  BalanceOfPlant
actors:   ThermalPlant
actors:   PowerNeeds
actors:  Costing
actors:   CostingARIES

Let's check what we got at a glance with the FUSE.digest(dd) function:

FUSE.digest(dd)
GEOMETRY                                EQUILIBRIUM                             TEMPERATURES
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
R0 → 6.5 [m]                            B0 → 7.8 [T]                            Te0 → 22.5 [keV]
a → 2.01 [m]                            ip → 12.7 [MA]                          Ti0 → 22 [keV]
1/ϵ → 3.24                              q95 → 6.09                              <Te> → 9.33 [keV]
κ → 2                                   <Bpol> → 0.8 [T]                        <Ti> → 8.32 [keV]
δ → 0.586                               βpol_MHD → 0.82                         Te0/<Te> → 2.41
ζ → -0.0128                             βtor_MHD → 0.00899                      Ti0/<Ti> → 2.65
Volume → 926 [m³]                       βn_MHD → 1.1
Surface → 755 [m²]

DENSITIES                               PRESSURES                               TRANSPORT
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
ne0 → 9.06e+19 [m⁻³]                    P0 → 0.731 [MPa]                        τe → 1.84 [s]
ne_ped → 5.96e+19 [m⁻³]                 <P> → 0.218 [MPa]                       τe_exp → 2.38 [s]
ne_line → 7.93e+19 [m⁻³]                P0/<P> → 3.35                           H98y2 → 0.824
<ne> → 7.28e+19 [m⁻³]                   βn → 1.08                               H98y2_exp → 0.892
ne0/<ne> → 1.24                         βn_th → 1.03                            Hds03 → 0.591
fGW → 0.792                                                                     Hds03_exp → 0.664
zeff_ped → 2                                                                    τα_thermalization → 0.949 [s]
<zeff> → 2                                                                      τα_slowing_down → 1.3 [s]
impurities → DT Ne20 He4

SOURCES                                 EXHAUST                                 CURRENTS
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
Pec → 50 [MW]                           Psol → 121 [MW]                         ip_bs_aux_ohm → 13 [MA]
rho0_ec → 0.55 [MW]                     PLH → 826 [MW]                          ip_ni → 6.96 [MA]
Pnbi → NaN [MW]                         Bpol_omp → 1.15 [T]                     ip_bs → 2.88 [MA]
Enbi1 → NaN [MeV]                       λq → 0.945 [mm]                         ip_aux → 4.08 [MA]
Pic → 50 [MW]                           qpol → 2.41e+03 [MW/m²]                 ip_ohm → 6 [MA]
Plh → NaN [MW]                          qpar → 1.27e+04 [MW/m²]                 ejima → 0.4
Paux_tot → 100 [MW]                     P/R0 → 18.7 [MW/m]                      flattop → 0.7 [Hours]
Pα → 56.3 [MW]                          PB/R0 → 146 [MW T/m]
Pohm → 0.43 [MW]                        PBp/R0 → 14.9 [MW T/m]
Pheat → 157 [MW]                        PBϵ/R0q95 → 7.37 [MW T/m]
Prad_tot → -35.5 [MW]                   neutrons_peak → 0.381 [MW/m²]

BOP                                     BUILD                                   COSTING
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
Pfusion → 281 [MW]                      PF_material → nb3sn                     capital_cost → 7.16 [$B]
Qfusion → 2.81                          TF_material → nb3sn_kdemo               levelized_CoE → Inf [$/kWh]
thermal_cycle_type → rankine            OH_material → nb3sn                     TF_of_total → 16.5 [%]
thermal_efficiency_plant → 22.7 [%]     TF_max_b → 15.4 [T]                     BOP_of_total → 1.69 [%]
thermal_efficiency_cycle → NaN [%]      OH_max_b → 15.9 [T]                     blanket_of_total → 20.9 [%]
power_electric_generated → 18.5 [MW]    TF_j_margin → 6.68                      cryostat_of_total → 2.86 [%]
Pelectric_net → -126 [MW]               OH_j_margin → 1.41
Qplant → 0.128                          TF_stress_margin → 3.02
TBR → 0.067                             OH_stress_margin → 1.26

@ time = 0.0 [s]
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
GKS: could not find font middle.ttf
​
​
​

Like before we can checkpoint results for later use

@checkin :awf dd ini act

Running a custom workflow

Let's now run a series of actors similar to what ActorWholeFacility does and play around with plotting to get a sense of what each individual actor does.

Let's start again from after the initialization stage

@checkout :init dd ini act

Let's start by positioning the PF coils, so that we stand a chance to reproduce the desired plasma shape. This will be important to ensure the stability of the ActorStationaryPlasma that we are going to run next.

FUSE.ActorPFdesign(dd, act; do_plot=true); # instead of setting `act.ActorPFdesign.do_plot=true` we can just pass `do_plot=true` as argument without chaning `act`
actors: PFdesign

The ActorStationaryPlasma iterates between plasma transport, pedestal, equilibrium and sources to return a self-consistent plasma solution

peq = plot(dd.equilibrium; label="before")
pcp = plot(dd.core_profiles; color=:gray, label="before")
FUSE.ActorStationaryPlasma(dd, act);
actors: StationaryPlasma
actors:  --------------- 1/5
actors:  HCD
actors:   SimpleEC
actors:   SimpleIC
actors:   SimpleLH
actors:   SimpleNB
actors:   SimplePL
actors:  Current
actors:   QED
actors:  Pedestal
actors:   EPED
actors:  CoreTransport
actors:   FluxMatcher
actors:  Current
actors:   QED
actors:  Equilibrium
actors:   TEQUILA
actors:  --------------- 1/5 @ 416.01%
actors:  HCD
actors:   SimpleEC
actors:   SimpleIC
actors:   SimpleLH
actors:   SimpleNB
actors:   SimplePL
actors:  Current
actors:   QED
actors:  Pedestal
actors:   EPED
actors:  CoreTransport
actors:   FluxMatcher
actors:  Current
actors:   QED
actors:  Equilibrium
actors:   TEQUILA
actors:  --------------- 2/5 @ 707.97%
actors:  HCD
actors:   SimpleEC
actors:   SimpleIC
actors:   SimpleLH
actors:   SimpleNB
actors:   SimplePL
actors:  Current
actors:   QED
actors:  Pedestal
actors:   EPED
actors:  CoreTransport
actors:   FluxMatcher
actors:  Current
actors:   QED
actors:  Equilibrium
actors:   TEQUILA
actors:  --------------- 3/5 @ 667.92%
actors:  HCD
actors:   SimpleEC
actors:   SimpleIC
actors:   SimpleLH
actors:   SimpleNB
actors:   SimplePL
actors:  Current
actors:   QED
actors:  Pedestal
actors:   EPED
actors:  CoreTransport
actors:   FluxMatcher
actors:  Current
actors:   QED
actors:  Equilibrium
actors:   TEQUILA
actors:  --------------- 4/5 @ 435.64%
actors:  HCD
actors:   SimpleEC
actors:   SimpleIC
actors:   SimpleLH
actors:   SimpleNB
actors:   SimplePL
actors:  Current
actors:   QED
actors:  Pedestal
actors:   EPED
actors:  CoreTransport
actors:   FluxMatcher
actors:  Current
actors:   QED
actors:  Equilibrium
actors:   TEQUILA
actors:  --------------- 5/5 @ 181.18%
┌ Warning: Max number of iterations (5) has been reached with convergence error of (1)[0.208, 0.354, 0.334, 0.218, 0.091](5) compared to threshold of 0.05
└ @ FUSE ~/work/FUSE.jl/FUSE.jl/src/actors/compound/stationary_plasma_actor.jl:204

we can compare equilibrium before and after the self-consistency loop

plot!(peq, dd.equilibrium; label="after")
Example block output

we can compare core_profiles before and after the self-consistency loop

plot!(pcp, dd.core_profiles; label="after")
Example block output

here are the sources

plot(dd.core_sources)
Example block output

and the flux-matched transport

plot(dd.core_transport)
Example block output

HFS sizing actor changes the thickness of the OH and TF layers on the high field side to satisfy current and stresses constraints

plot(dd.build)
FUSE.ActorHFSsizing(dd, act);
plot!(dd.build; cx=false)
Example block output

The stresses on the center stack are stored in the solid_mechanics IDS

plot(dd.solid_mechanics.center_stack.stress)
Example block output

LFS sizing actors change location of the outer TF leg to meet ripple requirements

plot(dd.build)
FUSE.ActorLFSsizing(dd, act);
plot!(dd.build; cx=false)
Example block output

A custom show() method is defined to print the summary of dd.build.layer

dd.build.layer
23×10 DataFrame
 Row │ group   details                            type      ΔR          R_start   R_end     material      area        volume     shape
     │ String  String                             String    Float64     Float64   Float64   String        Float64     Float64    String
─────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │ in                                                   1.28722      0.0       1.28722  steel          20.1828      99.5395
   2 │ in                                         oh        0.301782     1.28722   1.589    nb3sn           7.00143     81.0391
   3 │ hfs                                        tf        1.709        1.589     3.298    nb3sn_kdemo    43.0672     892.437   convex hull
   4 │ hfs     gap tf vacuum vessel                         0.0          3.298     3.298    vacuum          7.50152    495.023   double ellipse
   5 │ hfs     vacuum  outer                      vessel    0.0983012    3.298     3.39631  steel           3.07315    125.604   negative offset
   6 │ hfs     gap water                                    0.147452     3.39631   3.54376  water           4.49586    183.863   negative offset
   7 │ hfs     vacuum  inner                      vessel    0.0983012    3.54376   3.64206  steel           2.92133    119.546   negative offset
   8 │ hfs     gap high temp shield vacuum vess…            0.00983012   3.64206   3.65189  vacuum          0.288792    11.8213  negative offset
   9 │ hfs     high temp                          shield    0.196602     3.65189   3.84849  steel           5.64831    231.337   negative offset
  10 │ hfs                                        blanket   0.373544     3.84849   4.22204  lithium_lead   21.4356     980.067   negative offset
  11 │ hfs     first                              wall      0.0196602    4.22204   4.2417   tungsten        0.953236    31.0714  offset
  12 │ lhfs                                       plasma    4.51649      4.2417    8.75818  plasma         32.1632    1254.07
  13 │ lfs     first                              wall      0.0196602    8.75818   8.77785  tungsten        0.953236    31.0725  offset
  14 │ lfs                                        blanket   1.17961      8.77785   9.95746  lithium_lead   21.4356     980.066   negative offset
  15 │ lfs     high temp                          shield    0.196602     9.95746  10.1541   steel           5.64831    231.337   negative offset
  16 │ lfs     gap high temp shield vacuum vess…            0.0441736   10.1541   10.1982   vacuum          0.288792    11.8213  negative offset
  17 │ lfs     vacuum  inner                      vessel    0.0983012   10.1982   10.2965   steel           2.92133    119.546   negative offset
  18 │ lfs     gap water                                    0.147452    10.2965   10.444    water           4.49586    183.863   negative offset
  19 │ lfs     vacuum  outer                      vessel    0.0983012   10.444    10.5423   steel           3.07315    125.604   negative offset
  20 │ lfs     gap tf vacuum vessel                         0.775596    10.5423   11.3179   vacuum          7.50152    495.023   double ellipse
  21 │ lfs                                        tf        1.709       11.3179   13.0269   nb3sn_kdemo    43.0672     892.437   convex hull
  22 │ out                                                  1.96602      0.0      14.9929   vacuum        164.714     8378.28
  23 │ out                                        cryostat  0.0983012    0.0      15.0912   steel           4.87442    310.17    silo

ActorHFSsizing and ActorLFSsizing only change the layer's thicknesses, so we then need to trigger a build of the 2D cross-sections after them:

FUSE.ActorCXbuild(dd, act);
plot(dd.build)
Example block output

Generate passive structures information (for now the vacuum vessel)

FUSE.ActorPassiveStructures(dd, act)
plot(dd.pf_passive)
Example block output

We can now give the PF coils their final position given the new build

actor = FUSE.ActorPFdesign(dd, act);
plot(actor) # some actors define their own plot
Example block output

With information about both pfactive and pfpassive we can now evaluate vertical stability

FUSE.ActorVerticalStability(dd, act)
IMAS.freeze(dd.mhd_linear)
mhd_linear
├─ time[0] [s]
└─ time_slice
   └─ 1
      ├─ time ➡ 0 [s]
      └─ toroidal_mode
         ├─ 1
         │  ├─ n_tor0
         │  ├─ perturbation_type
         │  │  ├─ description"Vertical stability margin > 0.15 for stability"
         │  │  └─ name"m_s"
         │  └─ stability_metric ➡ 0.135504
         └─ 2
            ├─ n_tor0
            ├─ perturbation_type
            │  ├─ description"Normalized vertical growth rate < 10 for stability"
            │  └─ name"γτ"
            └─ stability_metric ➡ 9.12917

The ActorNeutronics calculates the heat flux on the first wall

FUSE.ActorNeutronics(dd, act);
p = plot(; layout=2, size=(900, 350))
plot!(p, dd.neutronics.time_slice[].wall_loading, subplot=1)
plot!(p, FUSE.define_neutrons(dd, 100000)[1], dd.equilibrium.time_slice[]; subplot=1, colorbar_entry=false)
plot!(p, dd.neutronics.time_slice[].wall_loading; cx=false, subplot=2, ylabel="")
Example block output

The ActorBlanket will change the thickess of the first wall, breeder, shield, and Li6 enrichment to achieve target TBR

FUSE.ActorBlanket(dd, act);
print_tree(IMAS.freeze(dd.blanket); maxdepth=5)
actors: Blanket
blanket
├─ module
│  └─ 1
│     ├─ layer
│     │  ├─ 1
│     │  │  ├─ material ➡ "tungsten"
│     │  │  ├─ midplane_thickness ➡ 0.0199698 [m]
│     │  │  └─ name ➡ "lfs first wall"
│     │  ├─ 2
│     │  │  ├─ material ➡ "lithium-lead: Li6/7=90.000%"
│     │  │  ├─ midplane_thickness ➡ 1.35591 [m]
│     │  │  └─ name ➡ "lfs blanket"
│     │  └─ 3
│     │     ├─ material ➡ "steel"
│     │     ├─ midplane_thickness ➡ 0.0200015 [m]
│     │     └─ name ➡ "lfs high temp shield"
│     ├─ name ➡ "blanket"
│     └─ time_slice
│        └─ 1
│           ├─ peak_escape_flux ➡ 207546 [W/m^2]
│           ├─ peak_wall_flux ➡ 939765 [W/m^2]
│           ├─ power_incident_neutrons ➡ 9.97788e+06 [W]
│           ├─ power_incident_radiated ➡ 0 [W]
│           ├─ power_thermal_extracted ➡ 1.19735e+07 [W]
│           ├─ power_thermal_neutrons ➡ 1.19735e+07 [W]
│           ├─ power_thermal_radiated ➡ 0 [W]
│           ├─ time ➡ 0 [s]
│           └─ tritium_breeding_ratio ➡ 1.48679
├─ time ➡ [0] [s]
└─ tritium_breeding_ratio ➡ [0.0658836]

The ActorDivertors actor calculates the divertors heat flux

FUSE.ActorDivertors(dd, act);
print_tree(IMAS.freeze(dd.divertors); maxdepth=4)
actors: Divertors
divertors
├─ divertor
│  └─ 1
│     ├─ power_conducted
│     │  ├─ data ➡ [1.21246e+08] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_convected
│     │  ├─ data ➡ [0] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_incident
│     │  ├─ data ➡ [3.43282e+07] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_thermal_extracted
│     │  ├─ data ➡ [3.43282e+07] [W]
│     │  └─ time ➡ [0] [s]
│     └─ target
│        ├─ 1
│        │  ⋮
│        │
│        └─ 2
│           ⋮
│
└─ time ➡ [0] [s]

The ActorBalanceOfPlant calculates the optimal cooling flow rates for the heat sources (breeder, divertor, and wall) and get an efficiency for the electricity conversion cycle

FUSE.ActorBalanceOfPlant(dd, act);
IMAS.freeze(dd.balance_of_plant)
balance_of_plant
├─ Q_plant[0.128056]
├─ power_electric_net[-1.26432e+08] [W]
├─ power_electric_plant_operation
│  ├─ system
│  │  ├─ 1
│  │  │  ├─ index1
│  │  │  ├─ name"HCD"
│  │  │  ├─ power[1e+08] [W]
│  │  │  └─ subsystem
│  │  │     ├─ 1
│  │  │     │  ├─ index1
│  │  │     │  ├─ name"nbi"
│  │  │     │  └─ power[0] [W]
│  │  │     ├─ 2
│  │  │     │  ├─ index2
│  │  │     │  ├─ name"ec_launchers"
│  │  │     │  └─ power[5e+07] [W]
│  │  │     ├─ 3
│  │  │     │  ├─ index3
│  │  │     │  ├─ name"ic_antennas"
│  │  │     │  └─ power[5e+07] [W]
│  │  │     └─ 4
│  │  │        ├─ index4
│  │  │        ├─ name"lh_antennas"
│  │  │        └─ power[0] [W]
│  │  ├─ 2
│  │  │  ├─ index3
│  │  │  ├─ name"cryostat"
│  │  │  └─ power[3e+07] [W]
│  │  ├─ 3
│  │  │  ├─ index4
│  │  │  ├─ name"tritium_handling"
│  │  │  └─ power[1.5e+07] [W]
│  │  └─ 4
│  │     ├─ index6
│  │     ├─ name"pf_active"
│  │     └─ power[0] [W]
│  └─ total_power[1.45e+08] [W]
├─ power_plant
│  ├─ heat_load
│  │  ├─ breeder[1.19735e+07] [W]
│  │  ├─ divertor[3.43282e+07] [W]
│  │  └─ wall[3.54741e+07] [W]
│  ├─ power_cycle_type"rankine"
│  ├─ power_electric_generated[1.85682e+07] [W]
│  └─ total_heat_supplied[8.17758e+07] [W]
├─ thermal_efficiency_plant[0.227062]
└─ time[0] [s]

ActorCosting will break down the capital and operational costs

FUSE.ActorCosting(dd, act)
plot(dd.costing)
Example block output

Let's checkpoint our results

@checkin :manual dd ini act

Saving and loading data

tutorial_temp_dir = tempdir()
filename = joinpath(tutorial_temp_dir, "$(ini.general.casename).json")
"/tmp/K-DEMO.json"

When saving data to be shared outside of FUSE, one can set freeze=true so that all expressions in the dd are evaluated and saved to file.

IMAS.imas2json(dd, filename; freeze=false, strict=false);

Load from JSON

dd1 = IMAS.json2imas(filename);

Comparing two IDSs

We can introduce a change in the dd1 and spot it with the diff function

dd1.equilibrium.time_slice[1].time = -100.0
IMAS.diff(dd.equilibrium, dd1.equilibrium)
Dict{String, String} with 1 entry:
  "time_slice[1].time" => "value:  0.0 --  -100.0"

Summary

Snapshot of dd in 0D quantities (evaluated at dd.global_time).

Extract + plots saved to PDF (printed to screen it filename is omitted)

filename = joinpath(tutorial_temp_dir, "$(ini.general.casename).pdf")
FUSE.extract(dd)#, filename)
GEOMETRY                                EQUILIBRIUM                             TEMPERATURES                            
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────    
R0 → 6.5 [m]                            B0 → 7.8 [T]                            Te0 → 22.5 [keV]                        
a → 2.01 [m]                            ip → 12.7 [MA]                          Ti0 → 22 [keV]                          
1/ϵ → 3.24                              q95 → 6.1                               <Te> → 9.33 [keV]                       
κ → 2                                   <Bpol> → 0.799 [T]                      <Ti> → 8.32 [keV]                       
δ → 0.586                               βpol_MHD → 0.821                        Te0/<Te> → 2.41                         
ζ → -0.0128                             βtor_MHD → 0.009                        Ti0/<Ti> → 2.65                         
Volume → 926 [m³]                       βn_MHD → 1.1                                                                    
Surface → 754 [m²]                                                                                                      
                                                                                                                        
DENSITIES                               PRESSURES                               TRANSPORT                               
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────    
ne0 → 9.06e+19 [m⁻³]                    P0 → 0.731 [MPa]                        τe → 1.84 [s]                           
ne_ped → 5.96e+19 [m⁻³]                 <P> → 0.218 [MPa]                       τe_exp → 2.38 [s]                       
ne_line → 7.93e+19 [m⁻³]                P0/<P> → 3.35                           H98y2 → 0.824                           
<ne> → 7.28e+19 [m⁻³]                   βn → 1.08                               H98y2_exp → 0.892                       
ne0/<ne> → 1.24                         βn_th → 1.03                            Hds03 → 0.591                           
fGW → 0.793                                                                     Hds03_exp → 0.664                       
zeff_ped → 2                                                                    τα_thermalization → 0.949 [s]           
<zeff> → 2                                                                      τα_slowing_down → 1.3 [s]               
impurities → DT Ne20 He4                                                                                                
                                                                                                                        
SOURCES                                 EXHAUST                                 CURRENTS                                
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────    
Pec → 50 [MW]                           Psol → 121 [MW]                         ip_bs_aux_ohm → 13 [MA]                 
rho0_ec → 0.55 [MW]                     PLH → 826 [MW]                          ip_ni → 6.96 [MA]                       
PnbiNaN [MW]                         Bpol_omp → 1.16 [T]                     ip_bs → 2.88 [MA]                       
Enbi1NaN [MeV]                       λq → 0.94 [mm]                          ip_aux → 4.08 [MA]                      
Pic → 50 [MW]                           qpol → 2.42e+03 [MW/m²]                 ip_ohm → 6 [MA]                         
PlhNaN [MW]                          qpar → 1.27e+04 [MW/m²]                 ejima → 0.4                             
Paux_tot → 100 [MW]                     P/R0 → 18.7 [MW/m]                      flattop → 0.7 [Hours]                   
 → 56.3 [MW]                          PB/R0 → 146 [MW T/m]                                                            
Pohm → 0.429 [MW]                       PBp/R0 → 14.9 [MW T/m]                                                          
Pheat → 157 [MW]                        PBϵ/R0q95 → 7.37 [MW T/m]                                                       
Prad_tot → -35.5 [MW]                   neutrons_peak → 0.383 [MW/m²]                                                   
                                                                                                                        
BOP                                     BUILD                                   COSTING                                 
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────    
Pfusion → 281 [MW]                      PF_material → nb3sn                     capital_cost → 7.03 [$B]                
Qfusion → 2.81                          TF_material → nb3sn_kdemo               levelized_CoE → Inf [$/kWh]             
thermal_cycle_type → rankine            OH_material → nb3sn                     TF_of_total → 16.8 [%]                  
thermal_efficiency_plant → 22.7 [%]     TF_max_b → 15.4 [T]                     BOP_of_total → 1.73 [%]                 
thermal_efficiency_cycleNaN [%]      OH_max_b → 15.9 [T]                     blanket_of_total → 18 [%]               
power_electric_generated → 18.6 [MW]    TF_j_margin → 6.68                      cryostat_of_total → 2.92 [%]            
Pelectric_net → -126 [MW]               OH_j_margin → 1.41                                                              
Qplant → 0.128                          TF_stress_margin → 3.02                                                         
TBR → 0.0659                            OH_stress_margin → 1.26