FUSE Introductory Tutorial

Download this tutorial from the FuseExamples repository

Basic concepts

To make sense of this tutorial, you'll need to know the following organization concepts of FUSE:

  1. 📂 Data storage: All data is stored in the dd structure, which follows the ITER IMAS ontology.
  2. 🧠 Actors: The core components of FUSE simulations are physics and engineering actors.
  3. 🕹️ Control: Actor functionality is governed by act parameters.
  4. 🚀 Initialization: The data structure can be initialized from 0D ini parameters.
  5. 🔧 Use cases: FUSE includes templates for various machines (e.g., FPP, ITER, ARC).
  6. 🔄 Workflows: Self-contained studies and optimizations are conducted via workflows, typically involving multiple FUSE simulations.
  7. 🌍 Interoperability: FUSE interfaces with existing modeling tools like OMFIT/OMAS and the IMAS ecosystem.

A diagram illustrating these concepts is provided below: image.png

Let's get started!


NOTE: Julia is a Just In Time (JIT) programming language. The first time something is executed it will take longer because of the compilation process. Subsequent calls the the same code will be blazingly fast.


Import the necessary packages

using Plots # for plotting
using FUSE # this will also import IMAS in the current namespace

Starting from a use-case

FUSE comes with some predefined use-cases, some of which are used for regression testing.

Note that some use cases are for non-nuclear experiments and certain Actors like Blankets or BalanceOfPlant will not perform any actions.

Here's the list of supported use-cases. These can be customized and you will also be able to build your own.

methods(FUSE.case_parameters)
# 26 methods for generic function case_parameters from FUSE:

Get initial parameters (ini) and actions (act) for a given use-case, let's use KDEMO for example

ini, act = FUSE.case_parameters(:KDEMO);

The ini data structure contains 0D parameters that will be used to bootstrap the dd with plausible data.

The ini parameters can be modified.

ini.equilibrium.B0 = 7.8
ini.equilibrium.R0 = 6.5;

The act data structure contains parameters that define how the actors (ie the models) will behave.

The act parameters can also be modified.

act.ActorCoreTransport.model = :FluxMatcher;

ini and act can now be used to initialize the data dictionary (dd) using the 0D parameters.

NOTE: init() does not return a self-consistent solution, just a plausible starting point to initialize our simulations!

dd = IMAS.dd() # an empty dd
FUSE.init(dd, ini, act);
actors: Equilibrium
actors:  TEQUILA
actors: CXbuild
actors: HCD
actors:  SimpleEC
actors:  SimpleIC
actors:  NeutralFueling
actors: Current
actors:  QED
actors: PassiveStructures

Let's see what we got

plot(dd.build)

plot(dd.equilibrium)

plot(dd.core_profiles)

plot(dd.core_sources)
Example block output

We can @checkin and @checkout variables with an associated tag.

This is handy to save and restore (checkpoint) our progress without having to always start from scratch (we'll use this later).

@checkin :init dd ini act

Running Actors

Let's now run a series of actors and play around with plotting to get a sense of what each individual actor does.

Here's how we can restore things back to after the initialization stage (in case we did anything else in between)

@checkout :init dd ini act

Actors in FUSE can be executed by passing two arguments to them: dd and act.

Let's start by positioning the PF coils, so that we stand a chance to reproduce the desired plasma shape. This will be important to ensure the stability of the ActorStationaryPlasma that we are going to run next.

FUSE.ActorPFdesign(dd, act; do_plot=true); # instead of setting `act.ActorPFdesign.do_plot=true` we can just pass `do_plot=true` as argument without chaning `act`
actors: PFdesign

The ActorStationaryPlasma iterates between plasma transport, pedestal, equilibrium and sources to return a self-consistent plasma solution

peq = plot(dd.equilibrium; label="before")
pcp = plot(dd.core_profiles; color=:gray, label="before")
#act.ActorFluxMatcher.verbose = true
act.ActorFluxMatcher.algorithm = :anderson
#act.ActorFluxMatcher.step_size = 0.1
FUSE.ActorStationaryPlasma(dd, act);
actors: StationaryPlasma
actors:  --------------- 1/5
actors:  HCD
actors:   SimpleEC
actors:   SimpleIC
actors:   NeutralFueling
actors:  Pedestal
actors:   EPED
actors:  CoreTransport
actors:   FluxMatcher
actors:    Pedestal
actors:     EPED
actors:    FluxCalculator
actors:     TGLF
actors:     Neoclassical
actors:  Current
actors:   QED
actors:  Sawteeth
actors:  Equilibrium
actors:   TEQUILA
actors:  --------------- 1/5 @ 595.88%
actors:  HCD
actors:   SimpleEC
actors:   SimpleIC
actors:   NeutralFueling
actors:  Pedestal
actors:   EPED
actors:  CoreTransport
actors:   FluxMatcher
actors:    Pedestal
actors:     EPED
actors:    FluxCalculator
actors:     TGLF
actors:     Neoclassical
actors:  Current
actors:   QED
actors:  Sawteeth
actors:  Equilibrium
actors:   TEQUILA
actors:  --------------- 2/5 @ 570.38%
actors:  HCD
actors:   SimpleEC
actors:   SimpleIC
actors:   NeutralFueling
actors:  Pedestal
actors:   EPED
actors:  CoreTransport
actors:   FluxMatcher
actors:    Pedestal
actors:     EPED
actors:    FluxCalculator
actors:     TGLF
actors:     Neoclassical
actors:  Current
actors:   QED
actors:  Sawteeth
actors:  Equilibrium
actors:   TEQUILA
actors:  --------------- 3/5 @ 303.70%
actors:  HCD
actors:   SimpleEC
actors:   SimpleIC
actors:   NeutralFueling
actors:  Pedestal
actors:   EPED
actors:  CoreTransport
actors:   FluxMatcher
actors:    Pedestal
actors:     EPED
actors:    FluxCalculator
actors:     TGLF
actors:     Neoclassical
actors:  Current
actors:   QED
actors:  Sawteeth
actors:  Equilibrium
actors:   TEQUILA
actors:  --------------- 4/5 @ 117.23%
actors:  HCD
actors:   SimpleEC
actors:   SimpleIC
actors:   NeutralFueling
actors:  Pedestal
actors:   EPED
actors:  CoreTransport
actors:   FluxMatcher
actors:    Pedestal
actors:     EPED
actors:    FluxCalculator
actors:     TGLF
actors:     Neoclassical
actors:  Current
actors:   QED
actors:  Sawteeth
actors:  Equilibrium
actors:   TEQUILA
actors:  --------------- 5/5 @ 50.81%

we can compare equilibrium before and after the self-consistency loop

plot!(peq, dd.equilibrium; label="after")
Example block output

we can compare core_profiles before and after the self-consistency loop

plot!(pcp, dd.core_profiles; label="after")
Example block output

here are the sources

plot(dd.core_sources)
Example block output

and the flux-matched transport

plot(dd.core_transport)
Example block output

HFS sizing actor changes the thickness of the OH and TF layers on the high field side to satisfy current and stresses constraints

plot(dd.build)
FUSE.ActorHFSsizing(dd, act);
plot!(dd.build; cx=false)
Example block output

The stresses on the center stack are stored in the solid_mechanics IDS

plot(dd.solid_mechanics.center_stack.stress)
Example block output

LFS sizing actors change location of the outer TF leg to meet ripple requirements

plot(dd.build)
FUSE.ActorLFSsizing(dd, act);
plot!(dd.build; cx=false)
Example block output

A custom show() method is defined to print the summary of dd.build.layer

dd.build.layer
23×10 DataFrame
 Row │ group   details                            type      ΔR          R_start   R_end     material      area        volume     shape
     │ String  String                             String    Float64     Float64   Float64   String        Float64     Float64    String
─────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │ in                                                   1.32527      0.0       1.32527  steel          20.0726      98.9942  rectangle
   2 │ in                                         oh        0.305673     1.32527   1.63095  nb3sn           6.9632      80.5952  rectangle
   3 │ hfs                                        tf        1.667        1.63095   3.29794  nb3sn_kdemo    42.9246     889.465   convex hull
   4 │ hfs     gap tf vacuum vessel                         0.0          3.29794   3.29794  vacuum          7.46559    490.871   double ellipse
   5 │ hfs     vacuum  outer                      vessel    0.0982993    3.29794   3.39624  steel           3.06115    124.717   negative offset
   6 │ hfs     gap water                                    0.147449     3.39624   3.54369  water           4.47786    182.552   negative offset
   7 │ hfs     vacuum  inner                      vessel    0.0982993    3.54369   3.64199  steel           2.90933    118.686   negative offset
   8 │ hfs     gap high temp shield vacuum vess…            0.00982993   3.64199   3.65182  vacuum          0.287593    11.7359  negative offset
   9 │ hfs     high temp                          shield    0.196599     3.65182   3.84842  steel           5.62432    229.652   negative offset
  10 │ hfs                                        blanket   0.373538     3.84842   4.22196  lithium_lead   20.8557     951.46    negative offset
  11 │ hfs     first                              wall      0.0196599    4.22196   4.24162  tungsten        1.02635     34.1644  offset
  12 │ lhfs                                       plasma    4.51651      4.24162   8.75812  plasma         32.1335    1252.4
  13 │ lfs     first                              wall      0.0196599    8.75812   8.77778  tungsten        1.02635     34.1644  offset
  14 │ lfs                                        blanket   1.17959      8.77778   9.95738  lithium_lead   20.8557     951.46    negative offset
  15 │ lfs     high temp                          shield    0.196599     9.95738  10.154    steel           5.62432    229.652   negative offset
  16 │ lfs     gap high temp shield vacuum vess…            0.0442026   10.154    10.1982   vacuum          0.287593    11.7359  negative offset
  17 │ lfs     vacuum  inner                      vessel    0.0982993   10.1982   10.2965   steel           2.90933    118.686   negative offset
  18 │ lfs     gap water                                    0.147449    10.2965   10.4439   water           4.47786    182.552   negative offset
  19 │ lfs     vacuum  outer                      vessel    0.0982993   10.4439   10.5422   steel           3.06115    124.717   negative offset
  20 │ lfs     gap tf vacuum vessel                         0.775582    10.5422   11.3178   vacuum          7.46559    490.871   double ellipse
  21 │ lfs                                        tf        1.667       11.3178   12.9848   nb3sn_kdemo    42.9246     889.465   convex hull
  22 │ out                                                  1.96599      0.0      14.9508   vacuum        164.187     8377.39
  23 │ out                                        cryostat  0.0982993    0.0      15.0491   steel           4.86738    309.732   silo

ActorHFSsizing and ActorLFSsizing only change the layer's thicknesses, so we then need to trigger a build of the 2D cross-sections after them:

FUSE.ActorCXbuild(dd, act);
plot(dd.build)
Example block output

Generate passive structures information (for now the vacuum vessel)

FUSE.ActorPassiveStructures(dd, act)
plot(dd.pf_passive)
Example block output

We can now give the PF coils their final position given the new build

actor = FUSE.ActorPFdesign(dd, act);
plot(actor) # some actors define their own plot
Example block output

With information about both pfactive and pfpassive we can now evaluate vertical stability

FUSE.ActorVerticalStability(dd, act)
IMAS.freeze(dd.mhd_linear)
mhd_linear [DETACHED]
├─ time[0] [s]
└─ time_slice
   └─ 1
      ├─ time ➡ 0 [s]
      └─ toroidal_mode
         ├─ 1
         │  ├─ n_tor0
         │  ├─ perturbation_type
         │  │  ├─ description"Vertical stability margin > 0.15 for stability"
         │  │  └─ name"m_s"
         │  └─ stability_metric ➡ 0.177494
         └─ 2
            ├─ n_tor0
            ├─ perturbation_type
            │  ├─ description"Normalized vertical growth rate < 10 for stability"
            │  └─ name"γτ"
            └─ stability_metric ➡ 6.76771

The ActorNeutronics calculates the heat flux on the first wall

FUSE.ActorNeutronics(dd, act);
p = plot(; layout=2, size=(900, 350))
plot!(p, dd.neutronics.time_slice[].wall_loading, subplot=1)
plot!(p, FUSE.define_neutrons(dd, 100000)[1], dd.equilibrium.time_slice[]; subplot=1, colorbar_entry=false)
plot!(p, dd.neutronics.time_slice[].wall_loading; cx=false, subplot=2, ylabel="")
Example block output

The ActorBlanket will change the thickess of the first wall, breeder, shield, and Li6 enrichment to achieve target TBR

FUSE.ActorBlanket(dd, act);
print_tree(IMAS.freeze(dd.blanket); maxdepth=5)
actors: Blanket
blanket [DETACHED]
├─ module
│  └─ 1
│     ├─ layer
│     │  ├─ 1
│     │  │  ├─ material ➡ "tungsten"
│     │  │  ├─ midplane_thickness ➡ 0.01996 [m]
│     │  │  └─ name ➡ "lfs first wall"
│     │  ├─ 2
│     │  │  ├─ material ➡ "lithium-lead: Li6/7=90.000%"
│     │  │  ├─ midplane_thickness ➡ 1.28817 [m]
│     │  │  └─ name ➡ "lfs blanket"
│     │  └─ 3
│     │     ├─ material ➡ "steel"
│     │     ├─ midplane_thickness ➡ 0.0877212 [m]
│     │     └─ name ➡ "lfs high temp shield"
│     ├─ name ➡ "blanket"
│     └─ time_slice
│        └─ 1
│           ├─ peak_escape_flux ➡ 214718 [W/m^2]
│           ├─ peak_wall_flux ➡ 1.07186e+06 [W/m^2]
│           ├─ power_incident_neutrons ➡ 1.12124e+07 [W]
│           ├─ power_incident_radiated ➡ 0 [W]
│           ├─ power_thermal_extracted ➡ 1.34548e+07 [W]
│           ├─ power_thermal_neutrons ➡ 1.34548e+07 [W]
│           ├─ power_thermal_radiated ➡ 0 [W]
│           ├─ time ➡ 0 [s]
│           └─ tritium_breeding_ratio ➡ 1.66838
├─ time ➡ [0] [s]
└─ tritium_breeding_ratio ➡ [0.0750628]

The ActorDivertors actor calculates the divertors heat flux

FUSE.ActorDivertors(dd, act);
print_tree(IMAS.freeze(dd.divertors); maxdepth=4)
actors: Divertors
divertors [DETACHED]
├─ divertor
│  └─ 1
│     ├─ power_black_body
│     │  ├─ data ➡ [0] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_conducted
│     │  ├─ data ➡ [1.25319e+08] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_convected
│     │  ├─ data ➡ [0] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_currents
│     │  ├─ data ➡ [0] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_incident
│     │  ├─ data ➡ [3.75277e+07] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_neutrals
│     │  ├─ data ➡ [0] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_radiated
│     │  ├─ data ➡ [0] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_recombination_neutrals
│     │  ├─ data ➡ [0] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_recombination_plasma
│     │  ├─ data ➡ [0] [W]
│     │  └─ time ➡ [0] [s]
│     ├─ power_thermal_extracted
│     │  ├─ data ➡ [3.75277e+07] [W]
│     │  └─ time ➡ [0] [s]
│     └─ target
│        ├─ 1
│        │  ⋮
│        │
│        └─ 2
│           ⋮
│
└─ time ➡ [0] [s]

The ActorBalanceOfPlant calculates the optimal cooling flow rates for the heat sources (breeder, divertor, and wall) and get an efficiency for the electricity conversion cycle

FUSE.ActorBalanceOfPlant(dd, act);
IMAS.freeze(dd.balance_of_plant)
balance_of_plant [DETACHED]
├─ Q_plant[0.138457]
├─ power_electric_net[-1.24924e+08] [W]
├─ power_electric_plant_operation
│  ├─ system
│  │  ├─ 1
│  │  │  ├─ index1
│  │  │  ├─ name"HCD"
│  │  │  ├─ power[1e+08] [W]
│  │  │  └─ subsystem
│  │  │     ├─ 1
│  │  │     │  ├─ index1
│  │  │     │  ├─ name"nbi"
│  │  │     │  └─ power[0] [W]
│  │  │     ├─ 2
│  │  │     │  ├─ index2
│  │  │     │  ├─ name"ec_launchers"
│  │  │     │  └─ power[5e+07] [W]
│  │  │     ├─ 3
│  │  │     │  ├─ index3
│  │  │     │  ├─ name"ic_antennas"
│  │  │     │  └─ power[5e+07] [W]
│  │  │     └─ 4
│  │  │        ├─ index4
│  │  │        ├─ name"lh_antennas"
│  │  │        └─ power[0] [W]
│  │  ├─ 2
│  │  │  ├─ index3
│  │  │  ├─ name"cryostat"
│  │  │  └─ power[3e+07] [W]
│  │  ├─ 3
│  │  │  ├─ index4
│  │  │  ├─ name"tritium_handling"
│  │  │  └─ power[1.5e+07] [W]
│  │  └─ 4
│  │     ├─ index6
│  │     ├─ name"pf_active"
│  │     └─ power[0] [W]
│  └─ total_power[1.45e+08] [W]
├─ power_plant
│  ├─ heat_load
│  │  ├─ breeder[1.34548e+07] [W]
│  │  ├─ divertor[3.75277e+07] [W]
│  │  └─ wall[3.74821e+07] [W]
│  ├─ power_cycle_type"rankine"
│  ├─ power_electric_generated[2.00762e+07] [W]
│  └─ total_heat_supplied[8.84646e+07] [W]
├─ thermal_efficiency_plant[0.226941]
└─ time[0] [s]

ActorCosting will break down the capital and operational costs

FUSE.ActorCosting(dd, act)
plot(dd.costing)
Example block output

Let's checkpoint our results

@checkin :manual dd ini act

Whole facility design

Here we restore the :init checkpoint that we had previously stored. Resetting any changes to dd, ini, and act that we did in the meantime.

@checkout :init dd ini act

Actors can call other actors, creating workflows. For example, the ActorWholeFacility can be used to to get a self-consistent stationary whole facility design.

FUSE.ActorWholeFacility(dd, act);
actors: WholeFacility
actors:  PFdesign
actors:  StationaryPlasma
actors:   --------------- 1/5
actors:   HCD
actors:    SimpleEC
actors:    SimpleIC
actors:    NeutralFueling
actors:   Pedestal
actors:    EPED
actors:   CoreTransport
actors:    FluxMatcher
actors:     Pedestal
actors:      EPED
actors:     FluxCalculator
actors:      TGLF
actors:      Neoclassical
actors:   Current
actors:    QED
actors:   Sawteeth
actors:   Equilibrium
actors:    TEQUILA
actors:   --------------- 1/5 @ 595.84%
actors:   HCD
actors:    SimpleEC
actors:    SimpleIC
actors:    NeutralFueling
actors:   Pedestal
actors:    EPED
actors:   CoreTransport
actors:    FluxMatcher
actors:     Pedestal
actors:      EPED
actors:     FluxCalculator
actors:      TGLF
actors:      Neoclassical
actors:   Current
actors:    QED
actors:   Sawteeth
actors:   Equilibrium
actors:    TEQUILA
actors:   --------------- 2/5 @ 569.99%
actors:   HCD
actors:    SimpleEC
actors:    SimpleIC
actors:    NeutralFueling
actors:   Pedestal
actors:    EPED
actors:   CoreTransport
actors:    FluxMatcher
actors:     Pedestal
actors:      EPED
actors:     FluxCalculator
actors:      TGLF
actors:      Neoclassical
actors:   Current
actors:    QED
actors:   Sawteeth
actors:   Equilibrium
actors:    TEQUILA
actors:   --------------- 3/5 @ 347.42%
actors:   HCD
actors:    SimpleEC
actors:    SimpleIC
actors:    NeutralFueling
actors:   Pedestal
actors:    EPED
actors:   CoreTransport
actors:    FluxMatcher
actors:     Pedestal
actors:      EPED
actors:     FluxCalculator
actors:      TGLF
actors:      Neoclassical
actors:   Current
actors:    QED
actors:   Sawteeth
actors:   Equilibrium
actors:    TEQUILA
actors:   --------------- 4/5 @ 194.69%
actors:   HCD
actors:    SimpleEC
actors:    SimpleIC
actors:    NeutralFueling
actors:   Pedestal
actors:    EPED
actors:   CoreTransport
actors:    FluxMatcher
actors:     Pedestal
actors:      EPED
actors:     FluxCalculator
actors:      TGLF
actors:      Neoclassical
actors:   Current
actors:    QED
actors:   Sawteeth
actors:   Equilibrium
actors:    TEQUILA
actors:   --------------- 5/5 @ 159.14%
┌ Warning: Max number of iterations (5) has been reached with convergence error of (1)[0.298, 0.285, 0.174, 0.097, 0.08](5) compared to threshold of 0.05
└ @ FUSE ~/work/FUSE.jl/FUSE.jl/src/actors/compound/stationary_plasma_actor.jl:237
actors:  HFSsizing
actors:   FluxSwing
actors:   Stresses
actors:  LFSsizing
actors:  CXbuild
actors:  PFdesign
actors:  Equilibrium
actors:   TEQUILA
actors:  CXbuild
actors:  Neutronics
actors:  Blanket
actors:  CXbuild
actors:  PassiveStructures
actors:  Divertors
actors:  PlasmaLimits
actors:   VerticalStability
actors:   TroyonBetaNN
actors:  BalanceOfPlant
actors:   ThermalPlant
actors:   PowerNeeds
actors:  Costing
actors:   CostingARIES

Let's check what we got at a glance with the FUSE.digest(dd) function:

FUSE.digest(dd)
GEOMETRY                                EQUILIBRIUM                             TEMPERATURES
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
R0 → 6.5 [m]                            B0 → 7.8 [T]                            Te0 → 20.7 [keV]
a → 2.01 [m]                            ip → 12.7 [MA]                          Ti0 → 19.4 [keV]
1/ϵ → 3.24                              q95 → 6.14                              <Te> → 8.97 [keV]
κ → 2                                   <Bpol> → 0.802 [T]                      <Ti> → 8.1 [keV]
δ → 0.588                               βpol_MHD → 0.81                         Te0/<Te> → 2.31
ζ → -0.0136                             βtor_MHD → 0.00882                      Ti0/<Ti> → 2.39
Volume → 930 [m³]                       βn_MHD → 1.08
Surface → 759 [m²]

DENSITIES                               PRESSURES                               TRANSPORT
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
ne0 → 9.36e+19 [m⁻³]                    P0 → 0.57 [MPa]                         τe → 2.39 [s]
ne_ped → 6.8e+19 [m⁻³]                  <P> → 0.214 [MPa]                       τe_exp → 1.84 [s]
ne_line → 8.38e+19 [m⁻³]                P0/<P> → 2.66                           H98y2 → 0.888
<ne> → 7.62e+19 [m⁻³]                   βn → 1.09                               H98y2_exp → 0.819
ne0/<ne> → 1.23                         βn_th → 1.09                            Hds03 → 0.657
fGW → 0.834                                                                     Hds03_exp → 0.585
zeff_ped → 2                                                                    τα_thermalization → 0.954 [s]
<zeff> → 2                                                                      τα_slowing_down → 1.12 [s]
impurities → DT Ne20 He4

SOURCES                                 EXHAUST                                 CURRENTS
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
Pec → 50 [MW]                           Psol → 125 [MW]                         ip_bs_aux_ohm → 13 [MA]
rho0_ec → 0.56 [MW]                     PLH → 135 [MW]                          ip_ni → 6.24 [MA]
Pnbi → NaN [MW]                         Bpol_omp → 1.12 [T]                     ip_bs → 3.22 [MA]
Enbi1 → NaN [MeV]                       λq → 0.972 [mm]                         ip_aux → 3.01 [MA]
Pic → 50 [MW]                           qpol → 2.4e+03 [MW/m²]                  ip_ohm → 6.79 [MA]
Plh → NaN [MW]                          qpar → 1.31e+04 [MW/m²]                 ejima → 0.4
Paux_tot → 100 [MW]                     P/R0 → 19.2 [MW/m]                      flattop → 0.7 [Hours]
Pα → 61 [MW]                            PB/R0 → 150 [MW T/m]
Pohm → 0.523 [MW]                       PBp/R0 → 15.4 [MW T/m]
Pheat → 162 [MW]                        PBϵ/R0q95 → 7.53 [MW T/m]
Prad_tot → -36.9 [MW]                   neutrons_peak → 0.392 [MW/m²]

BOP                                     BUILD                                   COSTING
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
Pfusion → 305 [MW]                      PF_material → nb3sn                     capital_cost → 6.88 [$B]
Qfusion → 3.05                          TF_material → nb3sn_kdemo               levelized_CoE → Inf [$/kWh]
thermal_cycle_type → rankine            OH_material → nb3sn                     TF_of_total → 16.8 [%]
thermal_efficiency_plant → 22.7 [%]     TF_max_b → 15.4 [T]                     BOP_of_total → 1.82 [%]
thermal_efficiency_cycle → NaN [%]      OH_max_b → 14.9 [T]                     blanket_of_total → 20 [%]
power_electric_generated → 19.5 [MW]    TF_j_margin → 4.99                      cryostat_of_total → 2.95 [%]
Pelectric_net → -125 [MW]               OH_j_margin → 1.4
Qplant → 0.135                          TF_stress_margin → 3.04
TBR → 0.0747                            OH_stress_margin → 1.23

@ time = 0.0 [s]
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
GKS: could not find font middle.ttf
​
​
​

Like before we can checkpoint results for later use

@checkin :awf dd ini act

Working with the IMAS data structure

See the IMAS tutorial https://github.com/ProjectTorreyPines/FuseExamples/blob/master/tutorial_imas.ipynb

Understanding how to work with the IMAS data structure is a must for working within the FUSE ecosystem!

Summary

Snapshot of dd in 0D quantities (evaluated at dd.global_time).

Extract + plots saved to PDF (printed to screen if filename is omitted). NOTE: For PDF creation to work, one may need to install of DejaVu Sans Mono font.

tutorial_temp_dir = tempdir()
filename = joinpath(tutorial_temp_dir, "$(ini.general.casename).pdf")
display(filename)
FUSE.digest(dd)#, filename)
GEOMETRY                                EQUILIBRIUM                             TEMPERATURES
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
R0 → 6.5 [m]                            B0 → 7.8 [T]                            Te0 → 20.7 [keV]
a → 2.01 [m]                            ip → 12.7 [MA]                          Ti0 → 19.4 [keV]
1/ϵ → 3.24                              q95 → 6.14                              <Te> → 8.97 [keV]
κ → 2                                   <Bpol> → 0.802 [T]                      <Ti> → 8.1 [keV]
δ → 0.588                               βpol_MHD → 0.81                         Te0/<Te> → 2.31
ζ → -0.0136                             βtor_MHD → 0.00882                      Ti0/<Ti> → 2.39
Volume → 930 [m³]                       βn_MHD → 1.08
Surface → 759 [m²]

DENSITIES                               PRESSURES                               TRANSPORT
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
ne0 → 9.36e+19 [m⁻³]                    P0 → 0.57 [MPa]                         τe → 2.39 [s]
ne_ped → 6.8e+19 [m⁻³]                  <P> → 0.214 [MPa]                       τe_exp → 1.84 [s]
ne_line → 8.38e+19 [m⁻³]                P0/<P> → 2.66                           H98y2 → 0.888
<ne> → 7.62e+19 [m⁻³]                   βn → 1.09                               H98y2_exp → 0.819
ne0/<ne> → 1.23                         βn_th → 1.09                            Hds03 → 0.657
fGW → 0.834                                                                     Hds03_exp → 0.585
zeff_ped → 2                                                                    τα_thermalization → 0.954 [s]
<zeff> → 2                                                                      τα_slowing_down → 1.12 [s]
impurities → DT Ne20 He4

SOURCES                                 EXHAUST                                 CURRENTS
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
Pec → 50 [MW]                           Psol → 125 [MW]                         ip_bs_aux_ohm → 13 [MA]
rho0_ec → 0.56 [MW]                     PLH → 135 [MW]                          ip_ni → 6.24 [MA]
Pnbi → NaN [MW]                         Bpol_omp → 1.12 [T]                     ip_bs → 3.22 [MA]
Enbi1 → NaN [MeV]                       λq → 0.972 [mm]                         ip_aux → 3.01 [MA]
Pic → 50 [MW]                           qpol → 2.4e+03 [MW/m²]                  ip_ohm → 6.79 [MA]
Plh → NaN [MW]                          qpar → 1.31e+04 [MW/m²]                 ejima → 0.4
Paux_tot → 100 [MW]                     P/R0 → 19.2 [MW/m]                      flattop → 0.7 [Hours]
Pα → 61 [MW]                            PB/R0 → 150 [MW T/m]
Pohm → 0.523 [MW]                       PBp/R0 → 15.4 [MW T/m]
Pheat → 162 [MW]                        PBϵ/R0q95 → 7.53 [MW T/m]
Prad_tot → -36.9 [MW]                   neutrons_peak → 0.392 [MW/m²]

BOP                                     BUILD                                   COSTING
────────────────────────────────────    ────────────────────────────────────    ────────────────────────────────────
Pfusion → 305 [MW]                      PF_material → nb3sn                     capital_cost → 6.88 [$B]
Qfusion → 3.05                          TF_material → nb3sn_kdemo               levelized_CoE → Inf [$/kWh]
thermal_cycle_type → rankine            OH_material → nb3sn                     TF_of_total → 16.8 [%]
thermal_efficiency_plant → 22.7 [%]     TF_max_b → 15.4 [T]                     BOP_of_total → 1.82 [%]
thermal_efficiency_cycle → NaN [%]      OH_max_b → 14.9 [T]                     blanket_of_total → 20 [%]
power_electric_generated → 19.5 [MW]    TF_j_margin → 4.99                      cryostat_of_total → 2.95 [%]
Pelectric_net → -125 [MW]               OH_j_margin → 1.4
Qplant → 0.135                          TF_stress_margin → 3.04
TBR → 0.0747                            OH_stress_margin → 1.23

@ time = 0.0 [s]
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​